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FOREWORD
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of the Aerospace Mechanics Division (Mr. Dale H. Whitford,
Supervisor) of the University of Dayton Research Institute, under
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was performed under Project 2402, "Vehicle Equipment Technology,"
Task 240203, "Aerospace Vehicle Recovery and Escape Subsystems,"
Work Unit 24020344, "Coupled Structural Response of Aircraft

Transparencies Caused by Soft-Body Impact."

Overall supervision of the project was provided by Mr. Dale
H. Whitford. Dr. Fred K. Bogner was the original UDRI program
manager, who was succeeded by Dr. Ronald F. Taylor. Dr. Robert A.
Brockman was the principal investigator. Technical
direction and support was provided by Mr. Robert E. McCarty
(AFWAL/FIER) as the Air Force Project Engineer. The author also
wishes to acknowledge the contribution of Mr. Vincent G. Dominic,
whose assistance in developing and debugging the rezoningland

coupled solution modules was invaluable.
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SECTION 1
INTRODUCTION

This report describes the development of theoretical and
numerical methods for use in simulating the dynamic response of
structures to hydrodynamic loading. The particular problem of
interest is that of soft-body impacts on aircraft transparencies,
which involves several characteristics which make effective

analysis quite difficult. Among these characteristics are

- nonlinear structural response (large displacements and

nonlinear material behavior):

structural failures which often occur at times far in

excess of the duration of the impact;

- very large deformation of the impacting body:

strong interaction between structural response and the

magnitude and distribution of impact pressures; and

free-surface boundary conditions on the impacting body.

The analytical techniques presented here address each of these
problem areas to provide effective numerical solutions to

practical problems involving soft body impact.

The remainder of this Section describes the technical
aspects of the soft-body impact problem in more detail, and
outlines the general approach adopted in its solution.
Subsequent Sections are devoted to presenting the theoretical
development and essential information about the computer

implementation of the methodology.

l.1 PROBLEM OVERVIEW

Contact and impact situations are among the most important
and difficult problems in computational mechanics. Contact or
impact between solid bodies occurs in forming operations, wheel-
rail contact, ballistic impacts, and numerous other practical

circumstances. Fluid-structure interaction, contact between



solid and fluid media, is of interest in submerged structures,
reactor vessels, and turbomachinery. For each of these classes
of analytical problems, solution procedures of many types have
been developed and used successfully [1-5]. For the case of
solid to solid contact, very general analysis techniques exist,
based upon both explicit and implicit integration methods. In
fluid-structure interaction problems, the solution procedure
necessarily reflects the specific problem geometry or response

characteristics rather strongly.

Soft-body impacts, such as bird impacts on aircraft
transparencies, involve the interaction of a small volume of
solid material which behaves hydrodynamically (similar to a
fluid) with a more massive structure whose response is generally
less severe. When Eulerian methods of description (based on a
mesh fixed in space) are used for the hydrodynamic solution,
tracking of boundaries and free surfaces is difficult.

Lagrangian mesh techniques, in which computational reference
points move with the material, fail due to the severe mesh
distortion which may occur within the soft body. Explicit, large
deformation codes for solid mechanics applications [6-8]
sometimes provide the type of analytical capabilities which are
necessary to predict the resulting behavior; however, the need to
compute structural response over relatively long times (several
milliseconds) makes the use of these techniques prohibitive in
terms of cost. Due to the lack of solution methodology which is
truly tailored tc the soft-body impact problem, ad-hoc techniques
abound [9-11]. While such methods are economical and provide
useful data for preliminary design, their reliability leaves much
to be desired, and the objective of replacing experiment by

analysis remains unfulfilled.



1.2 GENERAL APPROACH

The solution techniques presented here are based upon the
finite element method [12]. Due to the widely differing
characteristics of the soft body and the structure, the coupled
impact problem is solved separately (but in tandem) for each
region, with appropriate interface conditions being imposed at

each stage of the solution.

The structural model experiences relatively small
deformations, which must be computed for extended time periods in
some cases. For the most part, structural response (as opposed
to wave propagation) is of primary interest. Therefore, the
finite element solution for the structure motion uses
higher-order elements in conjunction with highly stable, implicit
integration techniques. This combination limits the model to
reasonable size and permits the use of time steps in the
millisecond range. In return for this convenience, the implicit
method requires an iterative solution at each time step, and
formation of a global stiffness matrix. This approach to the
dynamic response solution is common in general-purpose finite
element packages, such as ABAQUS [13], ADINA [14], ANSYS [15],
MAGNA [16] and MARC [17].

The behavior of the soft body region is quite different in
character from the structural response. Here the deformations
are large and, due to the low material stiffness, depend upon
wave propagation effects as well as overall deformation modes.
The response is essentially hydrodynamic; that is, pressure
levels are typically many times greater than the strength of the
material. For this region, the numerical solution is based upon
explicit techniques which permit a much more detailed treatment
of the problem physics. Due to the free surface which makes up
most of the boundary of the body, a Lagrangian mesh, which moves
with the material, is used. The severe mesh distortion which
occurs in some situations is resolved by occasional "rezoning";
that is, complete regeneration of the mesh. While mesh rezoning
is often a source of difficulty in large deformation analyses,



the present technique includes automatic rezoning operations
which are invoked when preset tolerances are exceeded, and do not

require stopping and restarting the solution.

Appropriate interface conditions between the structure and
soft body meshes consist of kinematic conditions (compatibility
of displacements and velocities) and force/impulse conditions
(interface pressures and impulses). 1In the structural model,
forces exerted by the hydrodynamic mesh are applied directly to
compute incremental displacements; for the soft body, imposed
displacement conditions are provided by the structure model, and
interface forces develop as natural boundary conditions. For the
contact/impact calculations, the algorithm presented in Reference
[18] is used. Since stable time steps for the hydrodynamic mesh
are much smaller than for the structure mesh, a partitioning
method [19] is needed to enforce the proper flow of information

between the two distinct portions of the mesh.

The primary development areas in the work described are the
hydrodynamic solution and the interface techniques. These are
suitable for integration into most implicit, nonlinear structural
analysis programs. 1In the present effort, we have chosen one
particular program, MAGNA (Materially And Geometrically Nonlinear

Analysis) in which to implement the coupled impact solution.



1.3 NOTATION CONVENTIONS
The notation used in the body of this report conforms to the
following rules and conventions:

- Einstein's summation convention applies unless otherwise
noted; that is, repeated indices imply summation over the range
of the index;

- lower case subscripts are used for reference to spatial
dimensions and have a range of three;

- upper case subscripts refer to the nodes of a finite
element, and therefore have a range of N for an N-noded element;

- material time derivatives are indicated by a superimposed
doty; (°);

- a comma represents partial differentiation with respect
to the spatial coordinate which follows (e.g., uy o= au/axi);
where both time and spatial derivatives occur, as in ﬁ,i’ the
material time derivative is evaluated first.



SECTION 2
THEORETICAL FORMULATION

In this Section, the theory and numerical algorithms used in
the structural/hydrodynamic impact analysis are described. Since
the structural dynamics solution relies heavily upon existing
software, the discussion of this portion of the solution is only
cursory; for further details, we encourage the reader to consult
the documentation for one or more of the structural analysis
codes mentioned in Subsection 1.2. Herein, emphasis is placed
upon the hydrodynamic solution, the finite elements used, and the

mesh rezoning algorithm.



2.1 EQUATIONS OF MOTION

In what follows, a general formulation of the soft-body
impact problem is developed. Equations of motion are expressed

in terms of convected coordinates which coincide with initial or

reference positions of a body.

Consider two unconnected domains Va and Vb’ whose union is
denoted V, with boundary 3V (Figure 2.1). The boundary consists
of three segments: BVO, on which external forces are prescribed,
3Vu, on which displacements are specified, and aVc = aVar\aVb,
over which the two bodies are in contact. The initial position
of a material point in V is described in terms of Cartesian
coordinates am7m=l,2,3, and its position at time t is xi(am,t)7

i=1,2,3.
The motion of both bodies must obey the momentum equation
oji,j + pfi = p%i in Vv (2:1)
the traction boundary conditions
Ouafiy = L on Vv _ (2:2)
the kinematic boundary conditions
ui(am’t) = Gi(t) on v _ (2.3)

the contact interface conditions

(a) (b) =

[oji = aji ]nj = 0 (2:4)
(a) (b) _ on Vv

[ui - uy ]nj = 0 c (25

and the initial conditions

(2.6)

]
o]

xi(am,O)

Il
0
V]

ii(am,O) (2.7)
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Figure 2.1. Contact Between Two Arbitrary Bodies.



In Equations (2.1)-(2.7), all force and stress measures refer to
the instantaneous configuration, and overbars signify prescribed

quantities.

We assume that all kinematic conditions (Equations 2.3 and
2.5) are satisfied identically. Equations (2.1), (2.2) and (2.4)
may be expressed in the weak form

6(pxi- oji’j-pfi)éxi dv + 86 (ojinj-ti)éxi dA
o
+ / [o(?)-ogb)]nj §x; dA = 0 (2,8)

Ji
avc

where Gxi are virtual displacements which satisfy the kinematic
boundary conditions but are otherwise arbitrary. The divergence
theorem gives the relation

(a)_L(b)
f(ojiéxi)’jdv = [ ojinjdxi dA + [ [oji 033 ]njdxi dA  (2.9)
Vv oV oV
o c
in which
< dV = . .6 dv + () . dV
‘j,‘(ojidxl),\)d \.5 oJi,J X4 \j} oji xi,J

Equation (2.8) can therefore be rewritten in the more useful form

S (px, 6x, + 0,.6x, . - pf.8x.)dV - f t.6x, dA = 0 (2.10)
v i i ==

L s O 8 §9%y

The above weak form of the momentum equation and force boundary
conditions, together with appropriate constitutive relationships,
provides a basis for the finite element discretization of both
material regions.



2.2 FINITE ELEMENT APPROXIMATION

The spatial discretization of Equation (2.10) is based upon
a finite element approximation which, for a typical element "e",

has the form

. (E,n,T) xfj (t) {9.90)

Here the upper case subscript refers to individual nodes of the
element. The quantities x?k(t) are nodal values of the spatial
coordinates, which are made continuous between adjacent elements
using standard assembly procedures [12]. The shape functions

¢§(E,n,c) are uniquely defined by the properties

e .
¢K(£I,nl,c1) = GIK in v (2:12)
¢§ (Ealzk) =0 outside Ve

Here GIK is the Kronecker delta, which equals one when I and K are
equal, and equals zero otherwise. 1In most cases, we can omit the

superscript "e" without ambiguity, and simply write

Note that summation is implied on the repeated index K, whose
range is equal to the number of nodes connected to an element.
The weak form of the equations of motion (Equation 2.10)

becomes, in finite element form,

S [(ex

lv
e

+ g av (2.14)

[ s

. i7%5% 5%k §i¥%k,5%%ik = Py 0x4y)
= t, ¢ 6x._ dA] = O

ave 1 K 1K
o]

Since the nodal virtual displacements GxiK

independent of one another, their coefficients must vanish

are arbitrary and

identically. This condition gives the semi-discrete equations of
motion for the finite element model,

10



. |
b5 o VPRt * B,y = Phpg) OF

= i t. ¢.6x,., dA] =0 (2.15)

M = J pé.¢,  dv (2.16)

and the element force vector

e - —_ - —
FiK = [ (pfiQK oji’K,jK)dV + . ti¢K dA (2.17)
\'s Vv
e o
Equation (2.15) becomes
2 e - e
z (M X.. - F,_ ) =0 (2.18)

JK “iJd iK

Finally, invoking the finite element assembly procedure gives the

system of equations

Mk §iJ = F.x (2.19)
in which the nodal (upper case) subscripts range from one to the
number of nodes in the model. Equations (2.19), subject to the
kinematic boundary conditions (Equations 2.3 and 2.5) and the
initial conditions (Equations 2.6 and 2.7) must be integrated in
time to determine the transient response of the finite element

model.

11



2.3 STRUCTURAL RESPONSE SOLUTION

The structural responses of interest are dominated by low
frequency wave motion, and involve moderate amounts of material
deformation. Compared with these lower frequency motions, the
highest frequencies of the computational mesh for the structure
are many times greater due to high material stiffness. To
capture the overall structural motion using time steps which are
not controlled by high frequency behavior of the mesh, an
implicit method of solution is appropriate. Implicit solution
techniques make use of the equations of motion at time t+At to
solve for the motion at t+At, and normally involve the solution

of simultaneous equations and/or iteration at each time step.

As the basis of the implicit integration we adopt the two
parameter Newmark algorithm [20], which is obtained from the

following finite difference approximations:

‘t+at _ Tt ol ~t+A L
X. X. . + [(l—G)xiJ+6xiJ ]

1J i (2.20)

t+at .t 1
x =

et+At 2
i3 Xi5 + X4 ax. ] (At)

1 .t
gt + [{z-e) x5y = ak g

Parameters a and § are arbitrary and may be chosen to obtain
desirable numerical properties. The values a=1/4, 6=1/2 give the
trapezoidal integration rule, which is used exclusively in this

report.

In the implicit solution, Equation (2.19) is applied at time
t+At to determine the solution xngt:
~t+At  _ _t+At

MJK X{3 FiK (212i15)

t+At
iK
in a nonlinear fashion, Equation (2.21) must be solved

Since the forces F + which include the internal forces, depend

t+At

upon x./

12



iteratively. We define the nodal residual forces

__teAt “t+ At
®ix = Fik Myk XiJ (2.22)

which must vanish at the true solution QESAt. Zeros of Equation
(2.22) can be generated by Newton-Raphson iteration based upon
the Taylor series approximation

b (REFAE_ LAt

3% 5, ik |4k

=L FAL
¢iK(x

t+At

o e By ) Ywws = . (2.23)

The Jacobian matrix which must be formed, factored and solved to

carry out the iteration is otained by substituting the
t+At
id

and differentiating with respect to ij. Notice that, since the

accelerations x from Equations (2.20) into Equation (2.22),

quantities xiJ are discrete parameters, we have axiJ/aijSGijéJL'
The result is:

0d

90X

; oF .
iK iK 1

= + . (2.24)
iL aij a(At)2 e &

where Gij is the Kronecker delta. The leading term in
Equation (2.24) is commonly called the tangent stiffness matrix.
Equation (2.23) is applied repeatedly at each step of the
dynamic solution, until the corrections igiAt—xglAt and/or the
residuals ¢iK are smaller than predefined tolerances. Once the
displacement solution is known to the prescribed accuracy, nodal
velocities and accelerations are updated using Equations (2.20).
Reference [16] describes the implicit solution for the structural
response in more detail.

13



2.4 HYDRODYNAMIC RESPONSE SOLUTION

In contrast to the structural motion, the impact behavior of
the soft body is hydrodynamic in nature and involves very large
material distortions. Furthermore, wave speeds in this portion
of the computational mesh are relatively small due to low
material stiffness. Here a simpler method of solution is most

appropriate.

Integration of the equation of motion in the hydrodynamic

mesh is performed using the central difference approximations

st4+8t/2 . 1 t+At t

iy - At (xiJ - Xiq)

ot _ ] 't+At/2 ct=At/2

g8 = a2 =5 /2, (2.25)

The solution in this case is explicit, since the state at time
t+At is determined directly from that at time t. Equations
(2.19) and (2.25) are used directly, once per time step, to

advance the acceleration, velocity and displacement solutions.

The explicit nature of Equation (2.25) makes the integration
conditionally stable (that is, stable only for a limited range of
step sizes). The stability limit is well-known [21], and is given
by

At = [/1—62 - €] (2.26)

cr o
ma x

where e is the highest frequency of the mesh, and ¢ is the
fraction of critical damping in the highest frequency. Since it
is inconvenient to estimate the maximum frequency of the mesh
directly, we note that the maximum frequency for the complete
mesh is bounded above by the maximum element frequency. It is
therefore possible to relate the highest frequency to the nodal

separation A% and the material sound speed c,

14



Yoay = (3%) (2.27)

Equation (2.27) can be applied element-by-element at each time
step to control the integration time step. The acoustic speed c
for an inviscid flow is simply

= 3p
5 3°)s (2.28)

where the symbol s represents the entropy. This quantity can be

obtained for each element as a by-product of the equation of state
calculations.

i5



2.5 HYDRODYNAMIC FINITE ELEMENTS

The details of the specific finite element approximation
adopted for the hydrodynamic solution are described in this
section. Basic aspects of the element formulation follow the work

of Flanagan and Belytschko [21].
2.5.1 Element Geometry and Shape Functions

The unit of approximation in the hydrodynamic mesh is the
eight-node, linear displacement hexahedron shown in Figure 2.2. A
unit cube in the parametric coordinates (£,n,z), also denoted by
Ei' is mapped into physical coordinates X4 by means of the shape
functions ¢I(E,n,c). If the center of the cube is taken to be

the origin, -1/2:5151/2, the shape functions are

0p (8 m,8) = (3+2518) (F+2n n) (F+28 ¢) (2.29)

Flanagan and Belytschko [21] have shown that the or also may

be expressed in terms of an orthogonal set of base vectors

| ik 1 ]
o; = gi; + ZEAlI gl 7eh5 ({2+30)
1 ] 1
r
®gilyy P 5l ¥ eiulgy ® SNET,s
The constants EI’AjI , and raI are summarized in Table 2.1, and

are hereafter referred to as the constant, linear, and hourglass
base vectors, respectively. This form of the shape functions is
useful since it isolates the contribution of hourglass modes of
deformation (which are neglected by one-point integration)

explicitly on the unit cube.
2.5.2 Mean Stress Approximation

The eight-node hexahedron, one of the simplest of three
dimensional elements, must be used with care if good numerical

behavior is to be obtained. An exact numerical integration of

16



Figure 2.2. Eight-Node Hexahedral Finite Element.
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the eight node element may lead to "locking" of the mesh, while a
simple reduced (one point) integration fails to integrate the
volume of irregular elements exactly and may be non-convergent.
In the present work, we adopt the "mean stress approximation"
described in Reference [21] to obtain a convergent element with

desirable numerical properties.

The mean stress approximation is obtained by using mean
values of the stress and kinematic variables, while performing
the volume intedration exactly for arbitrarily-shaped elements.
The resulting element is therefore capable of representing states
of uniform stress and deformation exactly, a property which is
necessary for convergence [12]. The sole disadvantage is that
hourglass deformation modes of the element may be unrestrained,
and recourse must be made to artificial damping mechanisms to

avoid contamination of the numerical solution.
2.5.3 Element Kinematics

The spatial coordinates of points within a single element
are approximated as indicated in Equation (2.11),

X, = (2:.31)

i *rXik
where the shape functions for the eight node hexahedron are
defined by Equation (2.30). The range of the nodal (upper case)
subscript is 8, the number of nodes per element. The velocity

field is expressed in a similar form

Vi o= 0pVig (2.32)
For the spatial velocity gradient, we obtain
v . = (2-33)

i,5 7 *%,3Vik

since only o varies with spatial position. The parameters Vig
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are nodal guantities which vary only with time, and hence

ViK,j = 0.

With the mean stress approximation, it is necessary to form
mean values of the velocity gradient and stress for an element.
For this purpose, it is convenient to define a matrix containing
the integrals of the shape function derivatives,

B av (2.34)

s = vefch,i

For lack of a better name, matrix B will be referred to as the
"geometric matrix" for an element, since it is purely a function
of the element nodal coordinates. Consider the mean velocity

gradient for an element,

I'J
N : . OV 2.+35
vl,j Ve = Vl,j g ( )

From Equation (2.34), ;i g can be written more concisely as
’

= |
V. 3 = V (2.36)

B; :
137 ijlK

The geometric matrix B also provides a convenient method for

evaluating the element volume, since [21]

xiKBjK = Véij (2:37)

where Gij is the Kronecker delta. It is straightforward to verify
that both the constant and the hourglass base vectors are

orthogonal to B,

B..%_ =0 ¥ G=1:9:3 (2.38)

j=l[2[37 (1=1'2’3,4 (2.39)
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2.5.4 Constitutive Model

The constitutive relations used for the hydrodynamic mesh
are relatively simple, since the larger-scale effects of impact
(such as pressure level and momentum transfer) are of primary
interest. The material is defined in terms of bulk and shear
moduli (K,G), density p, and a material strength Gy. The rate of
deformation and the co-rotational (Jaumann) rate of the Cauchy

stress are assumed to be related by

v

= (k-2
055 = (K=35G) d), 6, + 2G 4, (2.40)

J

v
where the Jaumann stress rate oij is defined by

v

aij aij + oinkj + (2.41)

%3kYki
In Equation (2.41), oij is the stress tensor, bij its material

time derivative, and wij is the spin (vorticity),
E(V. = ) B N = 10 (2.42)

Material strength is accounted for by computing an effective

deviatoric stress,

5 Z2 b Gk
%™ F 3 %48 {&A%)
which is limited in magnitude to the material strength oy. When
the strength is exceeded, the deviatoric stresses are scaled

according to

o
o! o— L o . (2.44)
ij g i3
e
It should be noted that the primary purpose of the viscous
terms in the constitutive model is to stabilize pure shear modes
which are otherwise unconstrained. For this purpose, a small

positive shear coefficient is normally used.
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2.5.5 Element Forces

The element forces (Equation 2.19) include three separate

contributions:

- prescribed external forces:
- internal forces; and

- hourglass-stabilizing forces.

The first two of these are physically meaningful. The hourglass
resisting forces exist solely to stabilize the computational mesh
and must not interfere with the representation of the problem

physics.

Physical forces for an element are obtained from Equation
(2.17). For simplicity, we will consider only body forces and

the element internal forces,

Fik = é (pfi¢K-cji¢K'j) av (2.45)
Consistent with the mean stress approximation, o, Ei' and oji are

replaced by their mean values over an element: the resulting

nodal forces are then

1% - ojiBjK (2.46)
The mean stress Eji is obtained directly from the constitutive

model and the mean velocity gradient.

Hourglass-resisting forces for the hexahedron are computed
using the method described by Flanagan and Belytschko [21].
Figure 2.3 shows the four independent displacement modes of an
element corresponding to a single component of displacement; the
purpose of the anti-hourglassing forces is to resist the
development of the four hourglass displacement modes, which are

strain-free under the mean stress approximation.
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Define the hourglass shape vector YaI as
1

Yoz = Tor = 7 Bir%i3%ay k2saT )

The first subscript refers to a particular hourglass displacement
mode (Figure 2.3), and ranges from one to four: the upper case
subscript refers to specific nodes of an element. The hourglass
shape vector is orthogonal to the linearly varying portion of the
element velocity field for an element of arbitrary shape. That

is, the products

A
44 — VikYq (2.48)
io L

/g 1K'aK
called the hourglass modal velocities, provide an indication of
the amount of hourglassing which is present in the element. The
factor of 1//8 in Equation (2.48) is presént to normalize the
magnitudes of the modal velocities. Anti-hourglassing forces are

proportional to the hourglass modal velocities,

HG _

B
la

e /%(K+%G)BjKBjK &, (2.49)
and vanish when the element velocity field is purely linear. A
damping coefficient ¢ is used to control the magnitude of the
restoring forces. When the anti-hourglassing forces are defined
as indicated in Equation (2.49), € corresponds to the fraction of
critical damping in the highest-frequency mode of the element,

and critical time steps may be estimated using Equation (2.26).

It is important to realize that only pure hourglassing
deformations are suppressed by the above scheme. When global
deformation modes develop in which individual finite elements
experience other than purely linear velocity fields, the anti-
hourglassing forces combine to produce zero resultant forces,
since the hourglass modal velocities in adjacent elements are
identical in sign. 1In contrast to global deformation modes, true

hourglassing patterns contain modal velocities which alternate in
sign between adjacent elements, and the resistive forces combine

to suppress such motion (Figure 2.4).
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2.6 MESH REZONING

In the hydrodynamic portion of the mesh, large deformations
may occur as the solution proceeds. Since the nodal positions
are updated at each time step, very large deformations may result
in excessive distortion of the mesh, which are manifested in the

following ways:

- disparities in element size due to volume change;

- singularities due to element volumes tending to zero;

- undesirable element shape due to large distortions; and
- reductions in the permissible time step due to extreme

distortion and/or volume change.

These unfortunate situations can be resolved by reconstruction of
the computational mesh (rezoning), performed as necessary during

the solution.

Rezoning techniques are commonly used in large deformation
problems of solid mechanics, such as ballistic impact and metal
forming. However, their use normally requires a great deal of
interaction with the analyst and is therefore time-consuming and
expensive. The rezoning method developed in the present work is
automatic and non-interactive, and therefore can be performed
without halting the solution temporarily. In return for this
convenience, our technique allows somewhat less control over the
appearance of the rezoned computational mesh.

The rezoning process involves redefining nodal coordinates
and element connections for the model, and relocating solution
variables (velocities, pressures, densities, stresses) at the
newly-defined nodal positions. 1In general, the size of the
rezoned model (number of nodes and elements) may be different
from that of the original model. Subsequent sections describe
the conditions under which mesh rezoning is performed, and the
main features of the rezoning algorithms used in the present

work.

Two types of rezoning procedures have been developed and used

to date; we refer to these as rezoning algorithms I and II in the
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remainder of this section. The logic for invoking the rezoning
process is identical for both algorithms, and is discussed in the

next subsection.
2.6.1 Initiation of Rezoning Procedure

In most instances, severe distortion of the mesh can be
detected by monitoring element volumes and computed critical time
step sizes. If uniform compression or expansion occurs, critical
time step sizes may change slowly while the elemental volumes
change more rapidly. Severe shape distortion is usually
accompanied by a rapid decrease in the allowable time increment.

The hydrodynamic solution module continuously monitors both
the minimum and maximum element volumes for the entire mesh, as
well as the allowable time step. Each time the hydrodynamic
solution is restarted, initial values of these parameters are
computed and stored. At each time step, current values are
recovered from the internal force calculation, and changes in
each quantity are compared with preset tolerances (user-specified
or defaulted). When any one of the monitored values (minimum
volume, maximum volume, critical time step), as compared with the
initial values, exceeds its tolerance, rezoning is automatically
invoked. Following the rezone, several key solution quantities
(e.g., nodal masses) and the initial volume and time step values
are reset, and the solution restarts from the point of

interruption.
2.6.2 Rezoning Algorithm I

The first rezoning procedure consists of two phases: (a)
the definition of new nodal points and the corresponding solution
variables; and (b) the definition of finite elements which span
the material volume. The algorithm is designed to produce a
regular mesh within the interior of the region, with irregular
elements used as necessary near the boundaries and free surfaces
of the model.

The relocation of nodal points within the mesh is performed
using a reference grid pattern specifying fixed mesh stations
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along each of the Cartesian coordinate axes. Figure 2.5 shows
such a reference grid pattern in two dimensions. Wherever
material points coincide with intersections on this reference
pattern, nodes will be positioned; on the boundaries of the

region, nodes are located on reference lines as much as possible.

Figure 2.6 shows the relocation procedure in a conceptual
form. All nodes within the interior of the body lie at reference
grid intersections, and additional nodes (on reference lines if
possible) describe the boundary of the region as required. As
the positioning of new nodes takes place, linear interpolations
within the existing finite elements are performed to define nodal

values of the solution variables at the new node locations.

A key ingredient of the numerical algorithm used in rezoning
is the establishment of a one to one correspondence between node
points and mesh reference positions. When a conflict exists, it
is resolved in favor of the (new) node which lies closest to the
boundary of the material. This convention facilitates searching
operations during nodal placement, the merging of boundary nodes,
and the creation of finite elements for the rezoned mesh. 1In
return for this convenience, the resolution of the procedure is
limited to a linear interpolation between points which lie on

adjacent reference lines.

This first phase of the rezoning process is accomplished by
examining each element once, determining its intersections with
the reference mesh pattern and then tentatively positioning new
nodal points. Although new nodes may be moved several times as
the rezone continues, this operation is quick since no searching
is required. Once all elements have been searched, the boundary
nodes are examined for excessively small spacing and merged when
possible; this prevents critical time step sizes for the solution
phase from becoming unreasonably small due to fine mesh spacing

where none is called for.

Creation of new elements is straightforward once the nodal

points have been redefined and merged. Each set of eight
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adjacent reference positions potentially defines one element; to
determine if an element is actually present, the nodes which
correspond to each such group of points is examined. When at
least four nodes are present, and the resulting element volume is

positive, an element is defined.
2.6.3 Rezoning Algorithm II

A second rezoning technique has been developed based upon
experiences gained in using Algorithm I. The function of this
alternative technique is the same: given a distorted mesh of
eight-node elements, generate a revised mesh in which the
distortion is reduced or eliminated.

Algorithm II is based upon a different philosophy from
Algorithm I, in that:

O the number of nodes and elements does not change;
© mass and momentum are conserved to machine accuracy; and

O the repositioning is less dramatic than with Algorithm I.

This second procedure is performed by exXamining each node of the
existing mesh, and determining whether the node lies within the
interior of the body, on a smooth surface, on a distinct "edge" of
the region, or at a current "corner." The distinction between
these cases is made by examining the element faces connected to
each node.

For each point in the model, all element faces connected to
the point are collected, and a geometric analysis much like a
hidden line/surface removal procedure is performed. For an
interior node, all connected surfaces are eliminated (thus
identifying the node as interior). 1In this case, neighboring
points are used to reposition the node in question, and solution
variables are mapped to the new geometry by conditions of mass and
momentum conservation, and by volume weighting of tensor-valued
quantities (such as stress). A series of similar tests have been
designed to isolate surface, edge, and corner nodes. The sole
difference in treating these additional cases lies in the
selection of surrounding nodes to be used in repositioning. For
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surface nodes, only those nodes on the same surface are used, in
order to maintain the surface shape; "edge" nodes are moved only
along the curve defining the edge in question. Corner points are
never relocated, since they represent locations at which the model

geometry may be sharply discontinuous.

Our experience has been that the second rezoning algorithm is
superior, since mass, momentum, and geometric shape are preserved.
Symmetry conditions, when they exist, tend to survive many
repeated rezones with Algorithm II as well. Finally, the second
algorithm requires somewhat less memory and is faster in execution
than Algorithm I.

The sole disadvantage to the alternative rezoning procedure
is that nodal repositioning is moderate compared with the first
algorithm, so that rezoning must be performed more frequently.
The most satisfactory performance has been obtained with
relatively mild tolerances (about 50%) for both maximum element

volume change and time step reduction.

The soft-body impact code has been written to use either of
the rezoning algorithms described in this section. However,
Algorithm II is now being used exclusively due to its superior

performance.
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2.7 STRUCTURE MODEL / HYDRODYNAMIC MODEL INTERFACE

The interface between structural and hydrodynamic models
uses the contact analysis technique described in References [16]
and [18]. "Interface" or "contact" elements are defined on the
surface of the structure model: these elements are strictly
geometric, and have no material characteristics. The interface
elements move with the structure model, and cannot be penetrated
by nodes of the hydrodynamic model. Thus, the interface elements
impose time-dependent displacement boundary conditions on the
hydrodynamic model. Forces at hydrodynamic nodes in contact with
the interface elements define the impact forces, which are
transferred to the structural model at each major time step. At
minor time steps (i.e., those in the soft-body mesh), only
kinematic calculations (related to the displacement boundary

conditions) are performed.

The interface elements used in the present work are defined
by four corner points, as shown in Figure 2.7. Ordering of the
nodal points determines the outward normal direction for an
element. The restriction to four points rather than the variable
number of nodes used in the original algorithm is for reasons of
computational economy, since contact calculations must be
performed at each time step for the hydrodynamic mesh.

The sole remaining differences between the interface element
calculations in the present work and the original algorithm are
related to the ordering of the computations. Since the interface
element positions change only at major (structure) time steps,
while contact searches must be done at minor (hydrodynamic) time
steps, geometric parameters for the interface are precomputed at
each major step and stored for repeated use. These parameters
include element local coordinate transformations, coordinates, and

limiting coordinate values.
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Figure 2.7. Structural-Hydrodynamic Interface Element.
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SECTION 3
DEMONSTRATION PROBLEMS

Testing of the fluid-structure impact analysis procedure has
included the following types of problém solutions:

o elastic vibrations (using the moving boundary option);

0 low-speed normal impacts on rigid surfaces;

o classical fluid flow cases, such as Couette flow (using a
Newtonian fluid material model);

0 oblique impacts on rigid surfaces; and

coupled solutions for normal fluid-structure impact.

o}

In most cases, these solutions have been used to verify the
correctness of the soft-body impact analysis module. However,
some cases (mostly oblique impacts) have been used only to study
the behavior of the anti-hourglassing formulation and to verify
the correct operation of the rezoning module for problems
involving fully three-dimensional response. A fully coupled
impact test case is described in detail below.

The coupled problem considered is the normal impact of a
cylinder of porous gelatin, used in the laboratory simulation of
bird impacts, on a square flat plate. Although experimental data
corresponding precisely to the problem considered do not exist, a
similar case of impact on a rigid target is reported in Reference
[23]. The objectives in studying a similar case with a flexible
target are to verify that the computed force levels are similar,
and to observe the performance of the contact/impact procedure in
a situation where kinematic constraints and interface forces can

be observed and interpreted simply.

Physical data used in the simulation are as follows. The
plate is 12 inches square and 0.1 inch thick; one quadrant of the
plate is modeled due to symmetry. The plate material is
aluminum, with a modulus of 10 Mpsi, Poisson's ratio 0.3, and
density 0.098 pounds per cubic inch. All of the outer boundaries
of the plate are fully clamped. For simplicity, and to preclude
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the development of very large deformations, the plate material is
assumed to behave elastically; however, large displacement
effects are included in the computation. The impacting body is a
cylinder 1 inch in radius and 4 inches long (L/D=2). The
cylinder material is gelatin with 10% porosity, with density
0.0344 pounds per cubic inch. No mechanical properties are
available from Reference [23]; for this calculation, we assume a
shear modulus of 100. psi, linear and quadratic bulk moduli of
1000. psi, and a material strength of 10. psi.

The impact velocity for the event has been chosen to
correspond to one of the rigid target cases reported in Reference
(23], at 4724.4 inches per second (120 meters/second). The
approximate "squash-up" time (the time for the cylinder to travel
a distance equal to its initial length) is therefore 0.0008466
seconds. )

For the finite element solution of this problem, 25 thin
shell elements are used to represent the plate, and 48 eight-node
hexahedra model the cylinder. Both of these models are coarse,
since the objective is not to perform a detailed stress analysis
of the event; the most important effécts which the solution must
capture are the transfer of momentum between cylinder and plate,
and the tendency of the impacting body to spread over the surface
of the target. In the structure mesh, a constant time step of
0.01 milliseconds (about 1.2% of the squash-up time) is used; for
the soft body mesh, the time step is adjusted automatically and
continuously within the program. It is important to notice that
the resolution with which impact forces can be obtained from the
solution is limited to the structure mesh time step, since the
interface force calculations are performed only at the beginning

of each time step.

Figure 3.1 gives an overview of the impact calculation,
showing the boundaries of both bodies at times of 0.1 ms, 0«3 ms;,
0.5 ms, and 0.7 ms. The configuration at 0.7 ms represents the
final point of the solution, at which time the cylinder just
begins to rebound from the surface of the plate. By this time,
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Figure 3.1. Deformed Geometry of Plate and Cylinder at
0.1 ms, 0.3 ms, 0.5 ms, and 0.7 ms.
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the plate has attained its maximum deflection and is vibrating
upward. Obviously this same rebounding does not occur for the
rigid plate tests reported in Reference [23].

Figure 3.2 shows the deformed geometry of the cylinder at
intervals of 0.05 ms. The body is about 70% consumed during the
solution, as shown in thé side view of Figure 3.3 (just at the
point of rebound). This is at least qualitatively correct: the
deflection of the plate reaches about 0.75 inches at 0.65 ms,
which means that the rear surface of the cylinder, travéling at
its initial velocity, would reach the plate at approximately 1.0
ms. The soft-body mesh has been rezoned five times during the
interval shown in the Figure. The usual cause for rezoning is
exceedance of the time-step-change tolerance, which is set to
0.75; in two instances, the element volume change criterion has
been activated due to extreme compression of elements adjacent to

the impact surface.

Time histories of the interface forces, vertical momentum of
the cylinder, and plate central deflection are given in Figures
3.4 through 3.6, respectively. The theoretical impact force
during steady flow, for the quarter of the cylinder modeled, is
L2313

S 2
F = pAu " = 1558.4 1b.

This force level is indicated by a horizontal line in Figure 3.4.
During the initial stages of the impact, the total vertical force
oscillates about the theoretical value, and becomes larger at
later times. The following important points should be noted:

o the total forces plotted in Figure 3.4 represent values at
the beginning of structure time steps only, and therefore
are limited in resolution (note that the momentum curve
for the cylinder, Figure 3.5, is much smoother, since

this output is generated several times per increment);
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Figure.3.2.

Soft-Body Mesh at Time Intervals of
0. 05 Milliseconds.
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Figure 3.3. Elevation View of Cylindrical Body at
0.7 Milliseconds.

40



"SWTL SNSIdA 90104 3oedwl  ‘p g oInbTg

(SPUODSSTTTTW) HAWIL

] I L | | | 1 T T | ¥ T 00 00N -

| 08°sess-

L

| so-sess-

| 09" 88~

LAl

~| o9-oese-

~] o9 esee-

s
VASRA

l
“joeces-

41

(dT) dOo¥0od TYOILYIA



*SUWTJ, SNSISA YSoW Apod 3JOS JO WNJUSUWOW T[BOTIISA

(SPUODSSTTTTW) HWIL

*G*'f oanbtd

-
"
i

(*oes-"qT) WAINIWOW TYOIIIIA

42



ur _
. r.—-u
S
S
m>
u
(o]
Q
H
H
o
U
“m
.Hm

(s
PUODSSTTITIT I
o
Tt

u

Tu)
aW

&L

o
"
en-
s
-
Py
P
.-
P
2
<
Si°

.m.
m
mhgm
T
.pm

“19s

es

—~
0=

(*u
T)
LN
AW
e
OY'1ds
1d
TV
IN
gD

43



o the shell elements used for the plate are bilinear and
give a rather coarse displacement shape; as individual
elements change their orientation abruptly from step to
step, unrealistic oscillations occur in the vertical
forces which would not be expected with higher-order
structural finite elements;

0 the increase in vertical forces late in the event is
directly related to the displacement behavior of the
plate; note, for example, that the peaks in the force
curve correspond to times at which the plate velocity has
changed sign, and the center of the plate moves upward.

As Figure 3.6 shows, the plate central deflection reaches a
maximum near 0.65 ms, and exhibits some higher-frequency
oscillations prior to that time. Theée oscillations are rather
mild during the early stages of the impact, but become more
pronounced and shorter in duration as the deflections increase,
presumably due to membrane stiffening effects.

The results of the normal impact case above are encouraging,
since the calculations are well-behaved and yield reasonably
accurate information about the impact interface forces. Further
testing needs to be performed to address the following questions:

(1) Does a finer (or higher-order) structural model lead to
improved impact force predictions?

(2) Does the solution predict accurately the distribution of
loading over the target? Useful experimental results exist for
aircraft transparencies, with loading areas recorded using high
speed photography, which can be used to verify this aspect of the
analysis technique.

(3) How accurately must the bird (or bird substitute) material be
characterized in order to obtain reasonable predictions of impact
pressures, spreading, and load-response coupling?

We feel that the most serious limitations which exist at
present have not to do with the analytical model, but with the
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lack of reliable data for materials characterization. While
mechanical property values may not be critical to the calculation
of steady flow phase impact forces, inaccurate material modeling
will affect the spatial distribution of loading on the target,
particularly for more complex geometries. In many transparency
impact situations, the interaction between structural response
and the spatial distribution of the loading is felt to be a
critical factor in determining the transparency dynamic response.
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SECTION 4
COMPUTER CODE DESCRIPTION

This Section contains a brief description of the computer
implementation of the soft-body impact analysis. Information
contained in the section will be of interest to programmers or
other persons involved in further development, conversions of the
computer code to other machines, or interfacing of the analysis
routines with other structural dynamics programs. Information
about the routine usage of the computer program can be found in

Section 5.
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4.1 OVERVIEW

The computer code which implements the soft-body impact
analysis consists of a set of input, analysis and output
subroutines, which can be executed either as a stand-alone
program (with a suitable main program inserted), or coupled with
existing programs for structural dynamic analysis. For
convenience, we refer to this collection of software as the SBI
(Soft-Body Impact) code. The existing finite element program
MAGNA [16] has been used as the structural analysis module, it is
simply referred to by name in the discussion to follow.

The SBI code is written in ANSI FORTRAN 77, with the
exception of one subprogram (CPUSEC) which must be provided for
each target machine. The program has been compiled and executed
on CDC, CRAY and VAX computers without incident. The machine

dependencies in SBI are limited to three categories:

(1) the function subprogram CPUSEC, which returns the CPU

time from the start of the job, is machine-specific:

(2) IMPLICIT DOUBLE PRECISION statements are included in
each subprogram which uses variables of real data
type: these IMPLICIT statements contain the leading
characters "C-DBL", which can be removed to activate
the statements on machines with short word lengths;
and

(3) file OPEN statements used in a driver program in the
stand-alone mode may require different file name
parameters for the printed output file (e.g., OUTPUT
on CDC, $OUT on CRAY, TT: or none on VAX-11).

The remaining subsections describe the major components of
the SBI code, and the routines which are necessary to interface

the hydrodynamics analysis with a structural analysis code.
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4.2 MODULE AND COMMON BLOCK SUMMARIES

The hydrodynamics (SBI) code consists of five primary
program modules: input, analysis, rezoning, output and restart.
These modules can be invoked in virtually any order, except that
the input module must be called once at the beginning of a new
problem. Entry points into the first three modules are unique;

that is, there is only one way of invoking them:

Input - SUBROUTINE INCTRL
Analysis - SUBROUTINE FLSOLV
Rezoning - SUBROUTINE RZMAIN

The remaining two modules consist of utility subroutines, any of
which may be called as needed:

Output - SUBROUTINEs PRTXYZ, PRTVEL, PRZONE, MSHMPO
Restart - SUBROUTINEs FLSAVE, FLREST
In the stand-alone mode of operation, a driver program is

needed to control the execution of the input, analysis, output
and restart modules. The rezoning operation is normally called
as needed under control of the analysis segment. When the SBI
analysis is coupled with a structural analysis program, the
interface subroutines perform this control function. In the
coupled mode, the structural analyzer acts as the control
program, calling the SBI routines for input, output, analysis or

restart functions as needed.

Communication between the SBI modules and a calling program
is accomplished in two ways. First, a real array is supplied to
the SBI routines as working storage, which is dynamically
allocated as needed. Second, a series of ten COMMON blocks is
used to retain key solution parameters. The contents of these
blocks are described below, including the modules in which they
are defined and used. Single-letter codes used to identify the
modules are: (I)nput, (A)nalysis, (O)utput, (R)estart, re(Z)one.
When variables in COMMON must be defined in the driver program or

the structural analyzer interface, a 'D' code appears.
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COMMON Block /PROBID/

ITITLE I

COMMON Block /CTLBLK/

Name Defined Used
NWORK D IARZ
LWORK A IARZ
LWA I IA
IFILL - -
NUMNOD IZ IAORZ
NUMEL 1Z IAORZ
NUMMAT I IARZ
NVAR T IAORZ
NUMRWC I IAR
NUMCON 5 IAR
NREF i IZR
NUMSBC I IAR
NFILL — -
LCORD IZ IARZ
LSVAR 12 IARZ
LCONN TZ IARZ
LMATL I IAR
LRWBC I IAR

Description

Alphanumeric title (CHARACTER*80)

Description

Length of working array (real words)
Length of working array (real words)
available for use in solution phase
Last word allocated during input

Reserved space, 20 integer words

Current number of nodes in mesh

Current number of elements in mesh

Number of materials defined

Number of solution variables (normally
1l - 3 velocities, density, 6 stresses,
and effective strain parameter)

Number of rigid-wall boundary conditions

Number of contact (moving surface)
boundary conditions

List of length (3) giving the number of
rezoning reference stations in each
coordinate direction.

Number of symmetry boundary conditions

Reserved space, 29 integer words

Location of coordinate data block in the
main working array

Location of solution variables data block

Location of element connection data block

properties data block

data block

Location of

Location of rigid-wall b.c.

49



Name Defined Used Description

LCNBC 1 IAR Location of contact b.c. data block

LBODY L IAR Location of body forces data block

LREFP I IAR Location of rezoning reference position
data block

LSYBC I IAR Location of symmetry b.c. data block

LFILL - - Reserved space, 29 integer words

COMMON Block /SOLPAR/

Name Defined Used Description

TIME IA AOR Current time value

TMAX T AR Maximum time value

TREST IR R Last time at which restart file created
TPOST I0 OR Last time at which results file created
DTMIN I AR Lower limit on solution time step

DTMAX I AR Upper limit on solution time step

FILL - - Reserved space;, 10 real words

INCR IA AR Current time step number

INCMAX I AR Upper limit on number of time steps
IREST I DR Flag for restart output (O=off,l=on)
IPOST I DR Flag for results output (0O=o0ff,l=on)
MFILL - - Reserved space, 10 integer words

50



COMMON Block /TOLBLK/

Name Defined Used
DTFRAC I AR
VOLTOL i AR
SDTTOL I AR
HGDAMP I AR
DFACT I AR

COMMON Block /FLSPAR/

Name Defined Used
DT AR
TQUIT D AR
IFIRST D AR

Description

Fraction of critical time step to be
used in the solution, typically 0.7-0.9

Relative volume change permitted before

typically 0.1-0.5

Relative change permitted in critical

rezoning is invoked,

time step before rezoning is invoked,
typically 0.25-0.5

Hourglass damping fraction. This is the
fraction of critical damping used to
suppress hourglassing instabilities,
typically 0.05-0.5

Time step reduction due to hourglass
damping. DFACT is applied to the stable

time step to preserve stability. Set to

SQRT (1-HGDAMP**2 ) ~-HGDAMP

Description

Current time step

Maximum time value used to force an exit
from the analysis module at intermediate
times in the solution. Overrides TMAX.

Flag for first pass into analysis module;
forces initial conditions to be applied.

=1 for first pass, =0 afterward

51



COMMON B